Кислородно-конвертерный процесс - Definition. Was ist Кислородно-конвертерный процесс
Diclib.com
Wörterbuch ChatGPT
Geben Sie ein Wort oder eine Phrase in einer beliebigen Sprache ein 👆
Sprache:     

Übersetzung und Analyse von Wörtern durch künstliche Intelligenz ChatGPT

Auf dieser Seite erhalten Sie eine detaillierte Analyse eines Wortes oder einer Phrase mithilfe der besten heute verfügbaren Technologie der künstlichen Intelligenz:

  • wie das Wort verwendet wird
  • Häufigkeit der Nutzung
  • es wird häufiger in mündlicher oder schriftlicher Rede verwendet
  • Wortübersetzungsoptionen
  • Anwendungsbeispiele (mehrere Phrasen mit Übersetzung)
  • Etymologie

Was (wer) ist Кислородно-конвертерный процесс - definition

Кислородно-конверторный процесс; Кислородно-конвертерный процесс
  • бессемеровского]] конвертера
  • Схематическое изображение конвертера

КИСЛОРОДНО-КОНВЕРТЕРНЫЙ ПРОЦЕСС         
передел жидкого чугуна в сталь без подвода теплоты - продувкой металла в конвертере технически чистым кислородом. Под воздействием дутья примеси чугуна (Si, Mn, C и др.) окисляются с выделением значительного количества теплоты. По окончании продувки металл раскисляют (удаляют избыточный кислород). Благодаря высокой производительности кислородно-конвертерного процесса его роль в мировой выплавке стали постоянно растет.
Кислородно-конвертерный процесс         

один из видов передела жидкого чугуна в сталь без затраты топлива путём продувки чугуна в Конвертере технически чистым кислородом сверху. О целесообразности использования кислорода при производстве стали в конвертерах указывал ещё в 1876 русский металлург Д. К. Чернов. Впервые применил чистый кислород для продувки жидкого чугуна снизу советский инженер Н. И. Мозговой в 1936. В 1939-41 на Московском заводе станкоконструкций проводились опыты по продувке чугуна сверху кислородом в 1,5-т ковше и выплавлялась сталь для фасонного литья. Впервые К.-к. п. был опробован в промышленном масштабе в Австрии в 1952. Первый кислородно-конвертерный цех в СССР был введён в эксплуатацию в Днепропетровске на металлургическом заводе им. Петровского в 1956.

К.-к. п. осуществляется в конвертере с основной смолодоломитовой (доломит, смешанный со смолой) футеровкой и с глухим дном; кислород под давлением более 1 Мн/м2 (10 кгс/см2) подаётся водо-охлаждаемой фурмой (См. Фурма) через горловину конвертера. С целью образования основного шлака, связывающего фосфор, в конвертер в начале продувки добавляют известь. Под воздействием дутья примеси чугуна (кремний, марганец, углерод и др.) окисляются, выделяя значительное количество тепла, в результате чего одновременно снижается содержание примесей в металле и повышается температура, поддерживая его в жидком состоянии. Когда содержание углерода достигает требуемого значения (количество углерода определяется по времени от начала продувки и по количеству израсходованного кислорода), продувку прекращают и фурму извлекают из конвертера. Продувка обычно длится 15-22 мин. Полученный металл содержит в растворе избыток кислорода, поэтому заключительная стадия плавки - раскисление металла (См. Раскисление металлов). Течение К.-к. п. (т. е. последовательность реакций окисления примесей чугуна) обусловливается температурным режимом процесса и регулируется изменением количества дутья или введением в конвертер "охладителей" (Скрапа, железной руды, известняка). Температура металла при выпуске около 1600 °С. На приведена схема получения стали в кислородном конвертере.

Применение при конвертировании кислородного дутья вместо воздушного (см. Бессемеровский процесс, Томасовский процесс) позволило получать сталь с низким содержанием азота (0,002-0,006\%). Высокая температура К.-к. п. способствует интенсивному окислению углерода, поэтому содержание кислорода, растворенного в металле, снижается до 0,005-0,01\%. Расход кислорода на 1 т чугуна при К.-к. п. составляет ≈ 53 м3. При одном и том же качестве стали К.-к. п. по сравнению с мартеновским (см. Мартеновское производство) даёт экономию по капиталовложениям на 20-25\%, снижение себестоимости стали на 2-4\% и увеличение производительности труда на 25-30\%. В СССР за 1965-71 выплавка стали в кислородных конвертерах увеличена с 4 до 23,2 млн. т в год, или в 5,8 раза. Рост производства конвертерной стали сопровождается ростом ёмкости конвертеров. С технологической точки зрения, увеличение емкости конвертера не создает каких-либо дополнительных трудностей ведения плавки. Поэтому даже в крупных конвертерах выплавляют не только рядовую низкоуглеродистую сталь, но и среднеуглеродистую, высокоуглеродистую, низколегированную и легированную стали.

Лит.: Применение кислорода в конвертерном производстве стали, М., 1959; Туркенич Д. И., Автоматизация процесса плавки в кислородном конвертере, [М.], 1966: Бережинский А. И., Хомутинников П. С., Утилизация, охлаждение и очистка конвертерных газов, М., 1967; Явойский В. И., Теория процессов производства стали, 2 изд., М.. 1967; Конвертерные процессы производства стали, М., 1970.

С. Г. Афанасьев.

Схема получения стали в кислородном конвертере: а - загрузка металлолома; б - заливка чугуна; в - продувка; г - выпуск стали; д - слив шлака.

КОНВЕРТЕРНОЕ ПРОИЗВОДСТВО         
производство стали в конвертерах. До 2-й пол. 20 в. основными конвертерными процессами были бессемеровский и томасовский, которые затем вытеснены кислородно-конвертерным процессом.

Wikipedia

Конвертерное производство

Конвертерное производство — получение стали в сталеплавильных агрегатах-конвертерах путём продувки жидкого чугуна воздухом или кислородом. Превращение чугуна в сталь происходит благодаря окислению кислородом содержащихся в чугуне примесей (кремния, марганца, углерода и др.) и последующему удалению их из расплава. Выделяющееся в процессе окисления тепло повышает температуру расплава до необходимой для расплавления стали, то есть конвертер не требует топлива для работы. На начало XXI века более 60 % стали в мире производится конвертерным способом. В 2020 году 70 % мирового объёма стали выставлялось конвертерным способом.

Was ist КИСЛОРОДНО-КОНВЕРТЕРНЫЙ ПРОЦЕСС - Definition